Selective introduction of Cu impurity into fine-dispersed ZnS obtained during the process of one-stage synthesis

نویسندگان

  • Y.Y. Bacherikov
  • O.B. Okhrimenko
  • A.G. Zhuk
  • R.V. Kurichka
  • A.V. Stronski
  • A.V. Gilchuk
  • M.V. Herkalyuk
  • V.V. Kidalov
چکیده

Fine ZnS:Cu, obtained by method of self-propagating high-temperature synthesis was investigated. As flux in the mixture NaCl was used, Zn and S were taken in stoichiometric ratio; Cu concentration in charge consisted ~1.5 wt.%. Using SEM data, it was established that obtained ZnS:Cu consists from two fractions-first with particles sizes ~10 μm and more, and other with sizes 50-500 nm. It was established that composition of ZnS:Cu fractions was essentially different. According to EDS data, Cu concentration in particles of fraction with 50-500 nm sizes consists ~2 wt.%, and in particles with sizes ~10 μm and more the presence of Cu was not detected. The reasons that lead to the selective doping of particles in dependence on their size and also the role of NaCl in processes undergoing during synthesis of material are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of transition metal doped ZnSe/ZnS nanocrystals by a rapid photochemical method

In the present work, a one pot, rapid and room temperature photochemical Synthesis of transition metal (TM; Cu, Mn, Cr)-doped ZnSe/ZnS core/shell nanocrystals (NCs) was reported. FT-IR spectrum confirmed the capping of ZnSe by thioglycolic acid. XRD and TEM analysis demonstrated zinc blende phase NCs with an average size of around 3 and 5 nm for TM:ZnSe and TM:ZnSe/ZnS NCs, respectively. PL spe...

متن کامل

Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals.

Stable water-suspendable Cu+-doped ZnS nanocrystals (NCs) have been synthesized with mercaptopropionic acid (MPA) as a capping molecule. The nanocrystals have been characterized using a combination of experimental techniques including UV-vis and photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma (ICP), and extended X-...

متن کامل

The Effect of Impurity of Inert Atmosphere on Synthesis of Nanostructure TiAl (γ) Alloy by Mechanical Alloying Process

In this research, the high-energy planetary mill was employed to produce nanocrystalline Ti-50Al(γ)(at%) powders. Initial powders were mechanically alloyed in 99.9999% and 90% purities of Argon and also Air atmosphere with alloying times up to 50h. The effect of impurity of Argon atmosphere on the microstructure and the rate of phase transformation of Ti-50Al were investigated during mechanical...

متن کامل

Studying the Effect of Productive Factors on Synthesis of Anostructure Tial (Γ) Alloy By Mechanical Alloying

In this research, the Planetary mill was used for mechanical alloying (MA) of Ti and Alpowder mixture with equal at% (Ti50Al50). The effect of various factors, such as process control agent(PCA), speed of rotation of vial and ball-to-powder weight ratio, on process were studied and the bestcondition to synthesis the alloy was determined. Study on X-ray diffraction (XRD) patterns showedthat at p...

متن کامل

Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging

A facile strategy is reported here for synthesis of Zn-Cu-In-S/ZnS (ZCIS/ZnS) core/shell QDs to address the synthetic issues that the unexpected blue-shift of CuInS(2)-based nanocrystals. In this strategy, Zn(2+) ions are intentionally employed for the synthesis of alloyed ZCIS core QDs before ZnS shell coating, which contributes to the reduced blue-shift in photoluminescence (PL) emission. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017